Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland

نویسندگان

  • Timothy C. BARTHOLOMAUS
  • Leigh A. STEARNS
  • David A. SUTHERLAND
  • Emily L. SHROYER
  • Jonathan D. NASH
  • Ryan T. WALKER
  • Ginny CATANIA
  • Denis FELIKSON
  • Dustin CARROLL
  • Mason J. FRIED
  • Brice P. Y. NOËL
  • Michiel R. VAN DEN BROEKE
چکیده

Neighboring tidewater glaciers often exhibit asynchronous dynamic behavior, despite relatively uniform regional atmospheric and oceanic forcings. This variability may be controlled by a combination of local factors, including glacier and fjord geometry, fjord heat content and circulation, and glacier surface melt. In order to characterize and understand contrasts in adjacent tidewater glacier and fjord dynamics, we made coincident ice-ocean-atmosphere observations at high temporal resolution (minutes to weeks) within a 10 000 km area near Uummannaq, Greenland. Water column velocity, temperature and salinity measurements reveal systematic differences in neighboring fjords that imply contrasting circulation patterns. The observed ocean velocity and hydrography, combined with numerical modeling, suggest that subglacial discharge plays a major role in setting fjord conditions. In addition, satellite remote sensing of seasonal ice flow speed and terminus position reveal both speedup and slow-down in response to melt, as well as differences in calving style among the neighboring glaciers. Glacier force budgets and modeling also point toward subglacial discharge as a key factor in glacier behavior. For the studied region, individual glacier and fjord geometry modulate subglacial discharge, which leads to contrasts in both fjord and glacier dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on r...

متن کامل

Rapid submarine melting of the calving faces of West Greenland glaciers

Widespread glacier acceleration has been observed in Greenland in the past few years1–4 associated with the thinning of the lower reaches of the glaciers as they terminate in the ocean5–7. These glaciers thin both at the surface, from warm air temperatures, and along their submerged faces in contact with warm ocean waters8. Little is known about the rates of submarine melting9–11 and how they m...

متن کامل

Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet

Rising sea levels and increased surface melting of the Greenland ice sheet have heightened the need for direct observations of meltwater release from the ice edge to ocean. Buoyant sediment plumes that develop in fjords downstream of outlet glaciers are controlled by numerous factors, including meltwater runoff. Here, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery is us...

متن کامل

Greenland ice sheet motion insensitive to exceptional meltwater forcing.

Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt-induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt-induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, mel...

متن کامل

Estimating Spring Terminus Submarine Melt Rates at a Greenlandic Tidewater Glacier Using Satellite Imagery

Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016